Implement a Stack data structure using one or more Queues. Your stack should support the standard push, pop, top (peek), and empty operations.
For example, consider the following sequence of operations:
push(1)
push(2)
top() // returns 2
pop() // returns 2
empty() // returns false
Explain your approach clearly, focusing on how you would use queue operations (enqueue and dequeue) to achieve stack-like behavior. Discuss the time complexity of each operation in your implementation. Consider edge cases and potential optimizations.
This problem focuses on implementing a Stack data structure using one or more Queues. The challenge lies in the fact that stacks are LIFO (Last-In, First-Out) while queues are FIFO (First-In, First-Out). We need to cleverly use queue operations to mimic stack behavior.
This approach uses two queues to ensure that the most recently inserted element is always at the front of one of the queues, ready to be returned by the top
and pop
operations. Let's call the queues q1
and q2
.
q1
. Then, transfer all elements from q2
to q1
so that x
becomes the first element.q1
. This element will be the most recently pushed element, which adheres to the stack's LIFO principle.q1
.true
if both q1
and q2
are empty, false
otherwise.class Stack:
def __init__(self):
self.q1 = []
self.q2 = []
def push(self, x):
self.q1.append(x)
while self.q2:
self.q1.append(self.q2.pop(0))
self.q1, self.q2 = self.q2, self.q1
def pop(self):
if not self.empty():
return self.q1.pop(0)
return None
def top(self):
if not self.empty():
return self.q1[0]
return None
def empty(self):
return not self.q1 and not self.q2
# Example Usage
stack = Stack()
stack.push(1)
stack.push(2)
print(stack.top()) # Output: 2
print(stack.pop()) # Output: 2
print(stack.empty()) # Output: False
import java.util.LinkedList;
import java.util.Queue;
class Stack {
private Queue<Integer> q1 = new LinkedList<>();
private Queue<Integer> q2 = new LinkedList<>();
public void push(int x) {
q1.offer(x);
while (!q2.isEmpty()) {
q1.offer(q2.poll());
}
Queue<Integer> temp = q1;
q1 = q2;
q2 = temp;
}
public int pop() {
if (!empty()) {
return q2.poll();
}
return -1; // Or throw an exception
}
public int top() {
if (!empty()) {
return q2.peek();
}
return -1; // Or throw an exception
}
public boolean empty() {
return q2.isEmpty();
}
public static void main(String[] args) {
Stack stack = new Stack();
stack.push(1);
stack.push(2);
System.out.println(stack.top()); // Output: 2
System.out.println(stack.pop()); // Output: 2
System.out.println(stack.empty()); // Output: false
}
}
q2
to q1
.q1
.q1
.The space complexity is O(n), where n is the maximum number of elements stored in the stack, as we use two queues to store the elements.
This approach uses only one queue. When a new element is pushed onto the stack, we enqueue it to the queue. Then, we dequeue all the existing elements and enqueue them back to the queue. This operation will make sure the new element will be at the front of the queue, which simulates the stack's LIFO property.
true
if the queue is empty, false
otherwise.from collections import deque
class Stack:
def __init__(self):
self.q = deque()
def push(self, x):
self.q.append(x)
for _ in range(len(self.q) - 1):
self.q.append(self.q.popleft())
def pop(self):
if self.q:
return self.q.popleft()
return None
def top(self):
if self.q:
return self.q[0]
return None
def empty(self):
return not self.q
# Example Usage
stack = Stack()
stack.push(1)
stack.push(2)
print(stack.top()) # Output: 2
print(stack.pop()) # Output: 2
print(stack.empty()) # Output: False
import java.util.LinkedList;
import java.util.Queue;
class Stack {
private Queue<Integer> q = new LinkedList<>();
public void push(int x) {
q.offer(x);
for (int i = 0; i < q.size() - 1; i++) {
q.offer(q.poll());
}
}
public int pop() {
if (!q.isEmpty()) {
return q.poll();
}
return -1; // Or throw an exception
}
public int top() {
if (!q.isEmpty()) {
return q.peek();
}
return -1; // Or throw an exception
}
public boolean empty() {
return q.isEmpty();
}
public static void main(String[] args) {
Stack stack = new Stack();
stack.push(1);
stack.push(2);
System.out.println(stack.top()); // Output: 2
System.out.println(stack.pop()); // Output: 2
System.out.println(stack.empty()); // Output: false
}
}
The space complexity is O(n), where n is the maximum number of elements stored in the stack. We only use one queue to store the elements.
pop()
or top()
is called on an empty stack, it should return None
or throw an exception, as handled in the provided code examples. This is crucial to avoid errors when the stack is empty.push()
operation is O(n), which could become a bottleneck with frequent push operations on a large stack. The approach using one queue is generally preferred due to its simplicity.While the fundamental approach of using queues to simulate a stack remains the same, optimizations are limited by the inherent nature of the problem. The O(n) complexity of the push
operation when using a single queue is unavoidable since you need to reorder the queue to maintain the LIFO behavior. Using two queues doesn't fundamentally change this time complexity.
In practice, consider if a stack is truly the best data structure for your use case. If frequent pushing is needed, the overhead of reordering elements within queues may make stack implementation based on a python list or java ArrayList a better choice, because they can offer O(1) appends, as long as the array has allocated enough space.