Implement a SnapshotArray that supports the following interface:
SnapshotArray(int length)
initializes an array-like data structure with the given length. Initially, each element equals 0.void set(index, val)
sets the element at the given index
to be equal to val
.int snap()
takes a snapshot of the array and returns the snap_id
: the total number of times we called snap()
minus 1
.int get(index, snap_id)
returns the value at the given index
, at the time we took the snapshot with the given snap_id
For example:
Input: ["SnapshotArray","set","snap","set","get"]
[[3],[0,5],[],[0,6],[0,0]]
Output: [null,null,0,null,5]
Explanation:
SnapshotArray snapshotArr = new SnapshotArray(3); // set the length to be 3
snapshotArr.set(0,5); // Set array[0] = 5
snapshotArr.snap(); // Take a snapshot, return snap_id = 0
snapshotArr.set(0,6);
snapshotArr.get(0,0); // Get the value of array[0] with snap_id = 0, return 5
What data structures and algorithms are best suited for this problem? What are the time and space complexities of each operation?
class SnapshotArray:
def __init__(self, length: int):
self.array = [[(0, 0)] for _ in range(length)] # [(snap_id, val)]
self.snap_id = 0
def set(self, index: int, val: int) -> None:
self.array[index].append((self.snap_id, val))
def snap(self) -> int:
self.snap_id += 1
return self.snap_id - 1
def get(self, index: int, snap_id: int) -> int:
arr = self.array[index]
# Binary search for the largest snap_id <= target snap_id
l, r = 0, len(arr) - 1
ans = 0
while l <= r:
mid = (l + r) // 2
if arr[mid][0] <= snap_id:
ans = arr[mid][1]
l = mid + 1
else:
r = mid - 1
return ans
# Your SnapshotArray object will be instantiated and called as such:
# obj = SnapshotArray(length)
# obj.set(index,val)
# param_2 = obj.snap()
# param_3 = obj.get(index,snap_id)
Initialization:
__init__
method initializes the array
as a list of lists. Each inner list represents an element of the snapshot array, and stores pairs of (snap_id, value)
. The initial value for each element is [(0, 0)]
, indicating that at snap_id = 0
, the value is 0.snap_id
is initialized to 0, which is incremented each time snap()
is called.Set:
set
method appends a new (snap_id, val)
pair to the inner list corresponding to the given index
. This records the value val
at the current snap_id
.Snap:
snap
method increments the snap_id
and returns the previous snap_id
.Get:
get
method retrieves the value at the given index
for the given snap_id
.array[index]
to find the largest snap_id
that is less than or equal to the target snap_id
.snap_id
is the value of the element at the time of the given snapshot.snapshotArr = SnapshotArray(3);
snapshotArr.set(0,5);
snapshotArr.snap(); // Returns 0
snapshotArr.set(0,6);
snapshotArr.get(0,0); // Returns 5
SnapshotArray(length)
: O(length)set(index, val)
: O(1)snap()
: O(1)get(index, snap_id)
: O(log n), where n is the number of times the element at index
has been modified.SnapshotArray(length)
: O(length)set
. In the worst case, if set
is called for every element in the array for every snap
, the space complexity can be O(length * number of snaps).